EPISODE 7 – Overcoming Pediatric Device Innovation Challenges

In this episode, Matthew Maltese, Executive Director of the PA Pediatric Medical Device Consortium covers why it can be so hard to bring devices to market for kids and what we can do to help fix that. 

Matt and Dan discuss:

  • Current barrier to pediatric device innovation
  • How pediatric specialists operate without pediatric devices
  • Risk/Benefit rationale for small patient populations
  • Current industry and FDA initiatives to bring more devices to market for kids

Please note: We reference the Biodesign textbook in our conversation as a great resource. It’s available for purchase on Amazon here

apple-podcast Listen on Google Play Music spotify-logo-png-file-spotify-badge-large-png-1280 rss

Episode Transcript

Dan Henrich:     Hey, Matt.

Matthew Maltese:          Hey.

Dan Henrich:     Thanks so much for being our guest today. I’m really glad to have the opportunity to talk with you about pediatric devices and how we bring devices to market for small patient populations. I think you and I met for the first time last year at Children’s Hospital of Philadelphia at an event for FDA reviewers-

Matthew Maltese:          That’s right.

Dan Henrich:     … To understand what are some of the challenges for pediatric devices coming to market. I wanted to maybe take some elements of that event and those conversations and package them into an interview between us for our listeners, who may not be familiar with those challenges. Can you tell our listeners a little bit about why is it so difficult sometimes to bring pediatric devices to market and why are they different from devices for adults?

Matthew Maltese:          The challenge with pediatrics is that there are technical challenges associated with it. The growth of a child throughout the intended use of a device can be challenging, particularly for implantable devices. You can imagine a heart valve, for example. There’s wonderful unmet need potential for anyone who can develop a heart valve that’ll grow with the aorta or the other great vessel that the valve needs to go in.

Matthew Maltese:          There are those technical challenges, but then there are simply financial challenges. I’ve given talks around the country on medical devices and kids, and I will often ask the audience. I’ll ask them, “How many of you have parents?” And everybody puts their hand up, right? Everybody’s got a mom or a dad, or a mom and a dad. Then I ask, “How many of you have children?” A smaller subset of the group will put their hands up. Then I ask, “Okay, for everyone who has both parents and a child or children, if you had a choice to develop a medical device or other therapy or pharmaceutical that would save the life of your parent or save the life of your kid, who would you pick?” Uniformly, who would they pick, Dan?

Dan Henrich:     I’d pick my kid.

Matthew Maltese:          You’d pick your kid.

Dan Henrich:     Sorry, Dad.

Matthew Maltese:          Everybody picks their kid. Your dad would pick your kid too. Everyone uniformly chooses their kid. However, as a society, it doesn’t always work that way. In fact, it rarely works that way. We know that the marketplace for adult products, particularly, you take orthopedic products for the hip and the knee and elsewhere, there’s so much volume there. So many cases and so many devices to be sold that that’s where much of the attention goes.

Matthew Maltese:          It can be just very difficult to draw attention to the kids, because the populations, as you put in your opening remarks, are small, meaning there are few in the population in addition to be individuals in the population being small, physically small. That there are few in the population and so there can be challenges because the upside from a capitalist perspective is not as big. However, there’s still an upside. I think that’s there’s still an upside in most devices for kids.

Dan Henrich:     Are there VC firms or angel investors who specialize, then, in small population or pediatric devices?

Matthew Maltese:          There are. There are some firms that have, I guess, identified that this is something that they are interested in. More often than not, it’s individuals. You mentioned VC, so if we think about the stages of investing, the early round, the seed round, where individuals are involved who have enough financial resource to get something off the ground and enough business sense to identify a business opportunity, that’s where you’re most likely to find traditional investment, a willingness for traditional investors to get involved.

Matthew Maltese:          Venture capitalists, in the strictest term, are often spending somebody else’s money. They can’t really allow, just by their duty, they can’t allow these emotional matters to come into play, unless it’s part of their stated mission of their fund. Just as an aside, I’ve been working in this field for quite some time, and I’m impressed to find many, many individuals who have the means to invest and have some sort of connection to pediatrics. Maybe a child who was a pediatric patient or a sibling or a child who is a pediatric medical provider of some sort, and they are touched personally by this and therefore are willing to invest in some way.

Dan Henrich:     Given, then, the fact that there are many fewer options for a pediatric specialist when it comes to treating their patients, what does a pediatric cardiologist or a surgeon or anesthesiologist, how does he or she navigate that in terms of treating their patients with the devices available?

Matthew Maltese:          I once asked, I wanted to find out in my own hospital, the off-label use of medical devices. Of course, off-label means it’s outside the range of the FDA approved range for the device to be marketed. The uniform response was it was easier for my clinician colleagues at the time to make a list of the devices that are used on-label. That was the response almost uniformly. That’s how they do it. They patch, they cut, they modify when the pediatric specific device is not available.

Matthew Maltese:          That said, there are examples of pediatric devices coming to market even now. Where manufacturers who are being good citizens or recognizing market potential or a little bit of both or mission driven and can make something work financially, they will make their products, they will modify their products for the pediatric space.

Dan Henrich:     So, then, pediatric specialists, many of them are forced to sort of become device innovators on the fly, it sounds like. So I understand correctly and our audience understands correctly, if you have an off-label use, what that means is that the FDA has approved the device for certain types of use that are on the label. The manufacturer may not market it for anything but on-label use, but physicians can innovate where necessary to treat their patients using, basically, an unapproved use for a device that’s on the market. Is that right?

Matthew Maltese:          That is exactly right. A great example is cardiac stenting in pediatrics, where most of the pediatric stents are biliary stents from the adult market used off-label.

Dan Henrich:     How do physicians begin to appreciate whether a particular off-label use is an acceptable level of risk, then?

Matthew Maltese:          Oh. You know, I’d have to say that I’m completely unqualified to answer that question.

Dan Henrich:     That’s okay.

Matthew Maltese:          I wouldn’t answer that question. I think [crosstalk 00:09:27].

Dan Henrich:     We can cut it out.

Matthew Maltese:          You’d have to talk to a physician, but also, it’s going to vary from physician to physician and by the risk of the nature of the device.

Dan Henrich:     If we think about the fact that I’m sure FDA recognizes that it is ultimately, in the long run, better for the patient to have a device that’s gone through that learning process of is it acceptable risk benefit ratio for use in pediatric population through a regulatory pathway and through clinical trials, versus physicians who are doing what they need to do to treat their patients with the devices that they have. Is there anything going on at the agency to try to make that traditional pathway to get devices approved easier or less expensive or faster?

Matthew Maltese:          That’s a great question. There’s a new word out there, a new phrase. It’s called, quote, the New FDA. There really is a difference between the FDA of only five or 10 years ago and the FDA we see now. I think the things that I’ve observed myself and heard from others is much more collaborative, particularly at the pre-sub phase. Much faster. I think it’s been well documented that they can turn around approval evaluations much faster than they have in the past. It used to be that the standard was to go to Europe and get the CE Mark and then come back to the States for the FDA approval.

Dan Henrich:     For pediatric devices specifically or for devices in general?

Matthew Maltese:          In general. Very recently, I ran into a company from Norway working on a cardiac product for peds, incidentally, that was coming to the US first, because they just viewed it as a faster pathway. I think that there are great reasons to be very optimistic about all medical device development in the US market. That just extends to pediatrics. Let me just extend that a little further and say that there are specific people in the FDA and programs like the Pediatric Device Consortium program and other programs that are really designed to foster devices for kids, so there’s even extra reason to do kids first in your device idea.

Dan Henrich:     Can you tell me a little bit about the consortia? I know that you’re director, is that right, of the Pennsylvania Pediatric Device Consortium?

Matthew Maltese:          That’s right.

Dan Henrich:     Can you tell me about what those organizations are and what their mission is and how they work?

Matthew Maltese:          I can speak for our own organization, but I think in general the mission is to bring pediatric medical devices to market, period. That is the mission. As our consortium, the Pennsylvania Pediatric Medieval Device Consortium, we don’t care where they come from. They don’t have to come from the Philadelphia region, even though we’re branded Philadelphia, Pennsylvania. In fact, most of our devices that we’ve worked on come from outside of our region. We always just sought the best devices for kids and provided them with modest funding but hopefully better in kind resources to help them move their products to a point where they can get further funding and eventually make it to market.

Dan Henrich:     How many consortia are there?

Matthew Maltese:          There are five total in the United States, including ours in Pennsylvania.

Dan Henrich:     What about other initiatives at the agency? I know there’s a program called Humanitarian Device Exemptions. I know there’s a lot to talk about how real world evidence may be able to inform the approval process for new pediatric devices and making off-label uses on-label.

Matthew Maltese:          I could tell you what I’ve observed. I can also point you to someone at the FDA who might be willing to talk to you and can speak more, just has more knowledge on what all the FDA offers. A good example, though not pediatric specific, but I think something that will benefit pediatrics in a very big way is additive manufacturing, also known as 3D printing. The FDA has put a tremendous amount of effort into just understanding how additive manufacturing plays into the medical device market, because much of the value propositions for pediatric or other small volume populations pivots on the volume. For example, if you have to make something out of a polymer and injection molding is your manufacturing method, the molds alone can be tens of thousands of dollars.

Dan Henrich:     And depending on the size of the patient, you may need how many different sizes, right?

Matthew Maltese:          How many different sizes? Maybe only a handful per hospital per year or per month, but you still need them. 3D printing offers the great opportunity of being able to manufacture in very small lots. You can even envision the concept of a vending machine, if you will, that produces and sterilizes and packages a custom-sized medical device from raw materials and sits either at a centralized location close to several regional small population hospitals, or even in the hospital itself. So there are, I think, tremendous opportunities in additive manufacturing. That’s just one area that the FDA is working in, and there are many others, many others.

Dan Henrich:     What about all the talk around real world evidence? I know that in September, I think it was, you and I were both at a symposium that Children’s National hosted in Philly talking about real world evidence.

Matthew Maltese:          Say it 10 times fast.

Dan Henrich:     And how it may be able to inform and accelerate the device approval process for pediatric devices. Can you explain, what is real world evidence and how it might be able to …

Matthew Maltese:          Sure. Real world evidence is exactly what the name implies. It’s evidence or data or information that is gathered from real world experiences. To contrast what perhaps that means is real world is not the experimental world, like we might do on a bench top or with an animal in a laboratory, or real world is not what we might do in Insilico on a computer with various simulation packages that are available for simulating the laws of physics virtually. Real world is real world. Real patients experiencing real medical procedures with medical devices and all the other therapies that surround it.

Matthew Maltese:          I think what has really launched this is the electronic health record and the potential for connecting devices and in some cases the rich information that the device collects. You think about cardiac pacing now, where each device not only paces the heart but collects information at the same time. And connecting that back to the patient health record, which is then integrated into everything that that patient has experienced from a medical perspective throughout their course of care. That has great promise. I think, frankly, it’s something that we’re going to look back on and we’re going to be able to define much better years from now than we can define it right now, but the potential is great.

Dan Henrich:     Is the main appeal of that, then, that you already have these devices that pediatric surgeons and cardiologists and others, they’re designed for adults, they’re being used for children, and if we can collect that data on the off-label use, then perhaps we can use that data in lieu of or to make a clinical trial to get an on-label use approved?

Matthew Maltese:          That is one example.

Dan Henrich:     What about actually developing new pediatric devices, then? How would real world evidence inform that?

Matthew Maltese:          Well, I think the development of a brand new device that is being used for the first time will follow the traditional pathway of real world evidence generation, which is the clinical trial. That has been in place and will always be in place. The things that I talked about with regard to the electronic health record will presumably make those clinical trials easier or more informative or both.

Matthew Maltese:          There might be a way for this enhanced medical records to improve epidemiological understanding of disease in ways that reveal more information about unmet needs, and then spawns the development of new devices. I remain convinced that the best way to discover unmet needs is for innovators to be involved in the practice of medicine or close to the practice of medicine. That can be, for a practitioner, practicing medicine and, for an innovator who’s not a practitioner, being close to a practitioner who is practicing medicine and physically in the room when it’s happening so that they can observe what’s going on from a holistic perspective. And spending time with the patient, and spending time with the payer so that they understand fully what the unmet need is and how to intervene.

Dan Henrich:     So, then, could real world evidence uncover potentially larger markets than appreciated and mean that the traditional pathway to device approval is more viable for investors? Is that kind of the thinking behind that?

Matthew Maltese:          Most certainly. I think when investors, or I should say, when medical device innovators or even those who are working within large medical device companies who wouldn’t really consider themselves innovators, but maybe advocates for certain types of technology being developed within those companies, can look to real world evidence to help them justify to their own management a particular direction or course that they have to take.

Dan Henrich:     Something else I wanted to ask you about, this is a little bit of an ethical quagmire, but there is an ethical discussion going on when it comes to children and other vulnerable patient populations. There’s one side of the argument might say, really, we need lower regulatory barriers and less scrutiny for these devices because there’s such an unmet need that having something is better than having nothing, even if there’s a greater amount of risk. Whereas on the other side, and both sides of this argument are very understandable, I think, people say, no, since we have children who are not making these decisions themselves, they are unable to appreciate the risk, we actually need greater scrutiny, greater regulatory thresholds for safety and perhaps efficacy than we do for adult …

Matthew Maltese:          Great question. Maybe just a short story before I answer that kind of shook me at the time. It really brought reality to how I thought about my role in the world. When I was young and starting in the field, I was at an FDA meeting where we were discussing medical devices and medical devices for kids and the various medical and scientific aspects of it, and we were talking statistics and p-values. The kind of thing that makes geeks just drool at the mouth.

Matthew Maltese:          It was a public meeting, and a parent stood up and went to the microphone and said, “I have two kids, and they both have the same rare genetic condition. One of them has died, and the other one, who is two years younger than the one that just died, is going to die. We need to just take action. We need to do something, because their death sentence is already written.” I remember it very, very clearly.

Matthew Maltese:          I think that stuck with a lot of people in the room, and that situation that I just described, I think, has been rehearsed many times with FDA regulators who have had the challenge of trying to field that sort of a plea from the public, a plea from a parent who’s going to lose their child. No matter what, inaction means my child dies. And try to reconcile that with the law. It’s very challenging.

Matthew Maltese:          Fast forward to just about a year ago, I was at a conference where the concept of patient preference was being merged with statistics of efficacy. What a patient defined as risky is maybe completely different than what the p-value, if you will, which is a measure of statistical significance and it can be used to determine if one course is more risky than another course. How to merge those things together.

Matthew Maltese:          In kids, it’s a bigger challenge, because many of them just simply can’t talk, and then those who can talk, they really may not be able to … They certainly can’t express themselves in a legally binding sort of way. You can’t enter into a contract with a minor. So the parent has to be in place. But there is a template here for getting patient preference from kids. When we do any kind of medical study, research on kids, it doesn’t necessarily have to be medical research, we have to pass through the institutional review boards. If a kid, depending on where it’s being done and how the local IRB panel has determined, there’s an age of assent, which is a child can’t give consent, but they can give assent. They can say, “Yes, I want to participate,” or, “No, I do not want to participate.” Then the parental consent is of course what decides.

Matthew Maltese:          That’s an evolving space as well, where it’s clearly been determined that there is not a one size fits all measure of risk. It depends on the population, it depends on the disease, it depends on the intervention that’s proposed. And most importantly, it depends on the preferences of the patient as to the type of life that they want to live with or without the intervention.

Dan Henrich:     I would imagine that conversation is very different depending on whether you’re talking about a life threatening situation or a condition which might mean paralysis or some other type of very debilitating, ongoing condition, versus something that we wouldn’t call it elective in the adult care setting, but something where the consequences are much less significant. How is the idea of this risk to benefit ratio evaluated? Should the conversation in more dire situations really be about not risk first versus benefit, but benefit versus risk? Does that make sense? Which of those things should be prioritized in the more dire situations, I guess?

Matthew Maltese:          I don’t know. It really depends. It really depends. I think there are people more qualified than I to comment on the situation. I’m an engineer. I’m responsible for building the intervention. I always have to keep in mind the ethics of it. Having the right people in the room when those decisions are being made, the clinical care team, the parents, the child, the patient. That’s really critical, and that’s where the decision has to be made. That’s at the point of care.

Matthew Maltese:          Taking a step back to the point of FDA approval, I think it’s the same sort of template. You have to have a panel that represents the clinicians who are experts in the field. You have to have somebody who understands the regulatory pieces and what the statutes and the law say. Then you have to have the patient, and in the case of kids, the patients and their parents, a panel of them or a body of them, who are collectively speaking about these critical issues. Of, “I see what the mathematical risk is, but this is what it means to my life.”

Dan Henrich:     When do humanitarian device exemptions come into play in those types of situations? Can you talk a little bit about what an HDE is and what type of situation the FDA might grant?

Matthew Maltese:          I don’t have a lot of personal experience with them. There’s a certain threshold in terms of patient population, that if it’s below that threshold then an HDE kicks in. But still, it’s a challenging pathway to go through. If you really want to talk to somebody about that, you’ve got to talk to somebody like Seth Goldenberg or somebody like that. He could describe very well the ins and outs and advantages of all the various pathways. It’s a matter of debate, too, ongoing debate between the industry and the FDA as to what those thresholds, in terms of patient population, should be set at.

Dan Henrich:     I hope we’ve done a good job of framing for our listeners what is this environment and what are the different struggles and trade-offs that innovators are dealing with when they’re trying to develop new devices for kids. You’ve mentioned a couple times how important it is to have clinicians either innovating themselves or to be very closely tied to the team that is developing this product. It would be interesting for me to understand better, how does a clinician who’s practicing medicine full time, most of them got into that for a very specific reason and they want to be, whatever their hours are, not 9:00 to 5:00, probably. They want to be every day hands-on helping kids and their families. What’s the model for a clinician innovator who, maybe, is using a device off-label for years and developing their technique and really seeing, in a way that no one else can, the potential for a pediatric device innovation? What’s the model that you’ve seen be successful for bringing that idea to market?

Matthew Maltese:          Let me walk back my earlier statement about clinician innovator. There are certainly great examples of clinician innovators, but maybe introduce a new concept called a clinician needs finder and decouple that you have to innovate and find the need at the same time. You could very systematically, as a clinician, spend time just understanding the need and recruiting others who may join you in the innovation process, the solution process downstream, but at the moment that you recruit them, you’re in the needs finding space of just trying to figure out, what is the problem? Because there are scores of devices and other so-called great ideas that die downstream because the upstream unmet need was either not there or not well defined. Spending a long time on understanding the problem and understanding the unmet need is always warranted. You heard it here first, folks. Clinician needs finder. It’s a new person. It’s a new title. The next part of your question was, how does a clinician innovator go about innovating?

Dan Henrich:     Well, what’s the model you’ve seen be successful in your experience or even, maybe, now I want to refine my question now that you’ve said that. You’ve spent a lot of time working in an environment with pediatric specialists. They’re aware of these needs. What’s the mechanism for collecting all those needs at a big research institution? Is there a method, does it vary from institution to institution? Or is it on the clinician to go to the biomechanics research department or whatever it is and say, “Hey, I have this problem. Can you help me solve it?” Or is there a mechanism for collecting those needs?

Matthew Maltese:          I think that there is not a mechanism, at least in my observance at multiple institutions. There are a few spots that do it well. The Stanford Biodesign program I think is excellent, and Cincinnati has a great program, and others too. I think that, for the most part, the clinician needs finder is not a frequently observed phenomenon. It’s mostly the clinician innovator, who hopefully starts out as a clinician needs finder and then blossoms as an innovator.

Matthew Maltese:          I’ve also found that clinicians are, in many cases, pretty good engineers. There’s a little engineer inside every clinician, and perhaps there’s a little clinician inside of every engineer. What I’ve experienced, it’s not the rule of law. It’s not how the universe must work. It just seems to be how the universe has worked that I’ve observed, if you will. I think some things that I’ve observed that I think are positive is that there’s now a trend where clinician innovator is an academic path. Do you understand what I’m saying?

Dan Henrich:     Mm-hmm (affirmative).

Matthew Maltese:          Just to give a contrasting example, at my own institution, the master of science in clinical epidemiology was a common degree, master’s degree, that was sought by clinicians following med school. There’s an emerging pathway of clinical innovator, almost like an equivalent to that, that is now gaining recognition in the academic setting. I think the more that that happens, the more that the traditional professional promotion standards and pathways recognize innovation as a legitimate academic pursuit, that we’re going to see a lot more clinician innovators come to be. Some are starting it in med school. I can’t imagine that, myself. I can’t-

Dan Henrich:     How you could juggle those things, right?

Matthew Maltese:          Yes. If I could think of a time when someone doesn’t have any spare time, it would be medical school. What I’ve learned is that there are times in medical school, particular years, that clinicians in training have time and choose to invest their time in innovation. Then they maybe step away from it while they go through the more intense portions, and then they return back to it as they move on in their career. I think, as I talked about the FDA and the future being bright there, I’m also very optimistic about innovation being a more intricate part of academic medicine and people’s careers as faculty and med schools.

Dan Henrich:     Putting aside the need for more clinician needs finders, maybe we’re going to call them that, not necessarily clinician innovators, but what is the path that you have seen for a device to move from an idea that a clinician has or a need that a clinician has and an innovator who has a potential solution, to getting the funding to go through regulatory approval and get, eventually, matched up with a manufacturer or whatever that might be?

Matthew Maltese:          Persistence on the part of the innovator. I think that’s the one thing, persistence. Less brilliance, more persistence. Maybe this is just because it’s fresh on the brain, but I’ve had two instances where people I had met several years ago who just asked me for advice on an idea, and I threw some significant cold water on their idea for legitimate reasons, I think, and legitimate reasons that they admitted too. They’re back. They’re back three years later, and they’ve adjusted, they’ve adapted, they’re still working on the same problem, but they’ve reinvented. Reinvented, if you will. They’ve adjusted. They’ve kept going. That willingness to persist is, I think, the biggest thing that is the biggest factor. It’s good news that people who go to spend a long time in school, who recognize that your final end point and final diploma granting point is many years away, they tend to be persistent people anyway. It’s a good cohort to be drawing from.

Matthew Maltese:          I think the second thing is, of course, don’t be hung up on your solution, because when you do that, you actually narrow the potential solutions to the problem. This is why, I think, separating needs finding and solution generation needs to be two separate things, because if you’re a hammer, everything looks like a nail. If you come in thinking that I’m going to solve this problem by a new type of stent, everything that you do for this particular problem will be a stent, when it could be something else completely different that actually solves the problem, that’s part of the stenting process, but maybe a just completely different solution.

Dan Henrich:     This sounds like something I’ve read in that Biodesign book you have on your desk there.

Matthew Maltese:          We keep it right at the hand, right at ready.

Dan Henrich:     We’ll have to put a link to that when we post this on our blog.

Matthew Maltese:          I would, I would. Biodesign is not rocket science, it really isn’t, but it’s a great book and a great framework that the group at Stanford has put together. It’s really critical to read it and read it fully and rethink how you approach medtech innovation through it.

Dan Henrich:     Let’s talk about a clinician innovator team, we’ll call it, they’ve gone through the initial steps of the process by that book. They have a clearly defined needs statement, and they have evaluated different solutions and settled on a particular pathway for good reason. We often at Smithwise, in our early interactions, we may deal with an innovator who has an idea and a patent or is working on filing their patent, and the model in their minds is, get a patent, get a prototype, and then Johnson & Johnson or some other really big device manufacturer is going to buy this from me, and that’s going to be my exit strategy. That’s almost never what we actually see.

Dan Henrich:     I guess particularly within the pediatric realm where there’s all these other challenges, as well, to gathering funding, what advice would you give to a team in that situation, that has what you would call a very legitimate solution to a very real problem, but there’s a long way to go before their device is going to be snapped up by a manufacturer?

Matthew Maltese:          First of all, I agree with your assessment. It often seems like the inventor may have a tendency to overvalue the idea, whereas the investor or the eventual acquirer, which may be one of these large device manufacturers, they value the proof. If you’re steeped in academia, this is the equivalent in academia. If you have a theory for how a particular disease mechanism, let’s say you have a theory, and you publish the theory. That’s basically worthless. It’s your idea, it’s your opinion. Not proven. It’s not until you take it into the laboratory or take it into the clinic or do some other empirical study to show, or not show, that your theory is right. A patent is like a theory, and it’s not a theory about whether the thing will work. It’s a theory about whether the market will accept it and buy it. It’s a theory as to whether your idea will add value to someone else’s life downstream. The second part of your question was?

Dan Henrich:     What advice would you, perhaps have you given, to a team that has a really good theory and really good evidence to suggest that it’s technically viable, they still need to attract investors, they still need to prove that value to the market? What advice would you give them?

Matthew Maltese:          I think, first of all, just recognize that, as I said earlier, the idea is just an idea. There are several stages that you can go through to increase the value of your idea. I don’t mean to say value in the sense of how much money it’s worth. That’s not what I mean. I mean in the sense of how viable is your product in making a difference in a patient’s life. The confidence, if you will, that X years from now, your idea will blossom into something that can make a difference.

Matthew Maltese:          If you have an idea and you’ve built a prototype and you’ve tried it out on a bench, on a phantom, or a surrogate for a human, you’ve proven the concept. Okay, so now you’ve notched up the likelihood a little bit that your idea will have some impact on somebody’s life downstream. Then, you figure out your regulatory pathway and you start down the pathway. By regulatory pathway, I mean, of course, what is the FDA going to want you to do before you can be cleared to sell the product? It’s an animal test, let’s say, or it’s a test on a human and so forth. Each one of these things is a milestone and is a risk reducer, if you will.

Matthew Maltese:          Then once you have your FDA clearance, you’re still not done, because you have to show to the potential acquirer that there is a market for the product. You have to go out and, in a very traditional door-to-door sort of way, sell it. Sell it. Then people who buy it may find that it has value or they may find that it doesn’t have value. The acquirer is looking for those initial indicators.

Matthew Maltese:          Now, there are no hard and fast rules as to when an acquirer will flip the switch and decide to take your device on and proliferate it across the world to benefit the lives of millions. It depends on the device, it depends on the idea. With some ideas and in some financial climates, something might be picked up very, very early in the process. In other climates or with other ideas, the acquirer is going to want more evidence. The short answer is, it depends. I’m sorry.

Dan Henrich:     No problem.

Matthew Maltese:          That’s reality, it depends.

Dan Henrich:     I think that’s a fitting piece of advice in this environment. If it were easy, it would be done by now. Matt, I really want to thank you for taking the time to talk with us about this. I think those of us who are within the industry really see a lot of promise for things changing and developing with regard to pediatric devices and helping underserved populations. I want to thank you for the role you’ve played in that and continue to play.

Matthew Maltese:          Thank you, Dan. Thank you for focusing on pediatrics. It is who is most important to us, and so I’m glad that you and Smithwise are making this part of who you are.

Dan Henrich:     It’s our pleasure. It’s been a good journey.

Matthew Maltese:          Thank you.

Written by Daniel Henrich

Written by Daniel Henrich

Director of Marketing at Archimedic

Share This